Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
1.
Pestic Biochem Physiol ; 199: 105763, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458663

RESUMO

The oriental fruit fly, Bactrocera dorsalis (Hendel), an invasive insect pest infesting fruits and vegetables, possesses a remarkable capacity for environmental adaptation. The investigation of behind mechanisms of the stress adaptability in B. dorsalis holds significantly practical relevance. Previous studies on the molecular mechanism underlying stress resistance in B. dorsalis have predominantly focused on nuclear-coding genes, with limited exploration on organelle-coding genes. In this study, we assessed alterations in the mitochondrial physiological parameters of B. dorsalis under exposure to malathion, avermectin, and beta-cypermethrin at LD50 dosages. The results showed that all three insecticides were capable of reducing mitochondrial complex IV activity and ATP content. Expression patterns of mitochondrial coding genes across different developmental stages, tissues and insecticide exposures were analyzed by RT-qPCR. The results revealed that these mitochondrial coding genes were expressed in various tissues and at different developmental stages. Particularly noteworthy, atp6, cox2, and cytb exhibited substantial up-regulation in response to malathion and avermectin treatment. Furthermore, RNAi-mediated knockdown of atp6 and cox2 resulted in the increased toxicity of malathion and avermectin against B. dorsalis, and cox2 silencing was also associated with the decreased complex IV activity. These findings suggest that atp6 and cox2 most likely play pivotal roles in mediating tolerance or resistance to malathion and avermectin in B. dorsalis. Our results provide novel insights into the role of mitochondrial coding genes in conferring tolerance to insecticides in B. dorsalis, with practical implications for controlling this pest in the field.


Assuntos
Inseticidas , Ivermectina/análogos & derivados , Tephritidae , Animais , Inseticidas/farmacologia , Malation/toxicidade , Ciclo-Oxigenase 2 , Resistência a Inseticidas/genética , Tephritidae/genética
2.
Environ Sci Pollut Res Int ; 31(14): 21721-21736, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393561

RESUMO

Malathion serves as a pivotal pesticide in agriculture and the management of the Aedes aegypti mosquito. Despite its widespread use, there is a notable absence of studies elucidating the mechanisms through which malathion may affect the female reproductive system. Consequently, the objective of this investigation was to assess whether exposing juvenile female rats to low doses of malathion during the juvenile and peripubertal periods could compromise pubertal onset, estradiol levels, and the integrity of the ovaries and uterus while also examining the underlying mechanisms of damage. To achieve this, thirty juvenile female rats were subjected to either a vehicle or malathion (10 mg/kg or 50 mg/kg) between postnatal days 22 and 60, with subsequent verification of pubertal onset. Upon completion of the exposure period, blood samples were collected for estradiol assessment. The ovaries and uterus were then examined to evaluate histological integrity, oxidative stress, and the expression of genes associated with cell proliferation, antiapoptotic responses, and endocrine pathways. Although estradiol levels and pubertal onset remained unaffected, exposure to malathion compromised the integrity and morphometry of the ovaries and uterus. This was evidenced by altered oxidative profiles and changes in the expression of genes regulating the cell cycle, anti-apoptotic processes, and endocrine pathways. Our findings underscore the role of malathion in inducing cell proliferation, promoting cell survival, and causing oxidative damage to the female reproductive system in rats exposed during peripubertal periods.


Assuntos
Inseticidas , Malation , Ratos , Feminino , Animais , Malation/toxicidade , Inseticidas/toxicidade , Ovário , Estresse Oxidativo , Estradiol , Útero , Expressão Gênica
3.
Artigo em Inglês | MEDLINE | ID: mdl-38244824

RESUMO

The present investigation aimed to evaluate the long-term effects of malathion (Elathion®) at two sub-lethal concentrations (0.36 and 1.84 mgL-1) for 45 days after the determination of 96 h-LC50 value (18.35 mgL-1) in a commercially important aquaculture species, Labeo rohita by assaying multiple biomarker approaches. Total erythrocyte count (TEC), and haemoglobulin count (Hb) were found to be decreased while total leucocyte counts (TLC) were increased (p < 0.05) in malathion-intoxicated fish. Malathion exposure significantly reduced (p < 0.05) serum protein levels while significantly increased (p < 0.05) blood glucose levels. RNA activity in muscle was reduced (p < 0.05) while DNA activity increased (p < 0.05) in malathion-intoxicated fish. Acid phosphatase (ACP) activities in the brain; lacate dehydrogenase (LDH) activities in brain and liver were increased (p < 0.05), while alkaline phosphatase (ALP) activities in the brain; succinate dehydrogenase (SDH) activities in the brain, liver and kidney; acetylcholine esterase (AChE) activity in the brain; and ATPase activities in the brain, liver and kidney were reduced (p < 0.05) in comparison to control. Thus, the alteration in studied biomarkers was in a concentation-time dependent manner; however, it was more pronounced at the higher concentration at 45 days of exposure. The alteration in biomarker activity is probably a defensive mechanism/ adaptive response of fish to overcome the stress induced by malathion, which is a novel insight and possible impact on L.rohita. Our findings suggest malathion-induced stress, therefore, the use of malathion needs to be regulated to safeguard aquatic animals including fish and human health.


Assuntos
Cyprinidae , Malation , Animais , Humanos , Malation/toxicidade , Cyprinidae/metabolismo , Dose Letal Mediana , Água Doce , Biomarcadores/metabolismo
4.
Environ Sci Pollut Res Int ; 31(1): 1403-1418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038914

RESUMO

Neurodegenerative disorders are a debilitating and persistent threat to the global elderly population, carrying grim outcomes. Their genesis is often multifactorial, with a history of prior exposure to xenobiotics such as pesticides, heavy metals, enviornmental pollutants, ionizing radiation etc,. A holistic molecular insight into their mechanistic induction upon single or combinatorial exposure to different toxicants is still unclear. In the present study, one-month-old C57BL/6 male mice were administered orally with malathion (50 mg/kg body wt. for 14 days) and single whole-body radiation (0.5 Gy) on the 8th day. Post-treatment, behavioural assays for exploratory behaviour, memory, and learning were performed. After sacrifice, brains were collected for histology, biochemical assays, and transcriptomic analysis. Transcriptomic analysis revealed several altered processes like synaptic transmission and plasticity, neuronal survival, proliferation, and death. Signalling pathways like MAPK, PI3K-Akt, Apelin, NF-κB, cAMP, Notch etc., and pathways related to neurodegenerative diseases were altered. Increased astrogliosis was observed in the radiation and coexposure groups, with significant neuronal cell death and a reduction in the expression of NeuN. Sholl analysis, dendritic arborization and spine density studies revealed decreased total apical neuronal path length and dendritic spine density. Reduced levels of the antioxidants GST and GSH and acetylcholinesterase enzyme activity were also detected. However, no changes were seen in exploratory behaviour or learning and memory post-treatment. Thus, explicating the molecular mechanisms behind malathion and radiation can provide novel insights into external factor-driven neurotoxicity and neurodegenerative pathogenesis.


Assuntos
Acetilcolinesterase , Malation , Idoso , Humanos , Animais , Masculino , Camundongos , Lactente , Malation/toxicidade , Fosfatidilinositol 3-Quinases , Camundongos Endogâmicos C57BL , Encéfalo
5.
Pest Manag Sci ; 80(4): 2188-2198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158650

RESUMO

BACKGROUND: The stingless bee, Trigona spinipes, is an important pollinator of numerous native and cultivated plants. Trigona spinipes populations can be negatively impacted by insecticides commonly used for pest control in crops. However, this species has been neglected in toxicological studies. Here we observed the effects of seven insecticides on the survival of bees that had fed directly on insecticide-contaminated food sources or received insecticides via trophallactic exchanges between nestmates. The effects of insecticides on flight behavior were also determined for the compounds considered to be of low toxicity. RESULTS: Imidacloprid, spinosad and malathion were categorized as highly toxic to T. spinipes, whereas lambda-cyhalothrin, methomyl and chlorfenapyr were of medium to low toxicity and interfered with two aspects of flight behavior evaluated here. Chlorantraniliprole was the only insecticide tested here that had no significant effect on T. spinipes survival, although it did interfere with one aspect of flight capacity. A single bee that had ingested malathion, spinosad or imidacloprid, could contaminate three, four and nineteen other bees, respectively via trophallaxis, resulting in the death of the recipients. CONCLUSION: This is the first study to evaluate the ecotoxicology of a range of insecticides that not only negatively affected T. spinipes survival, but also interfered with flight capacity, a very important aspect of pollination behavior. The toxicity of the insecticides was observed following direct ingestion and also via trophallactic exchanges between nestmates, highlighting the possibility of lethal effects of these insecticides spreading throughout the colony, reducing the survival of non-foraging individuals. © 2023 Society of Chemical Industry.


Assuntos
Himenópteros , Inseticidas , Nitrocompostos , Humanos , Abelhas , Animais , Inseticidas/toxicidade , Malation/toxicidade , Neonicotinoides/toxicidade , Ingestão de Alimentos
6.
Pestic Biochem Physiol ; 197: 105690, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072545

RESUMO

Bactrocera dorsalis is a notable invasive pest that has developed resistance to several commonly used insecticides in the field, such as avermectin, beta-cypermethrin and malathion. Investigating the mechanisms of insecticide resistance in this pest is of paramount importance for ensuring its effective control. The ATP-binding cassette transporter subfamily B (ABCB) genes, responsible for encoding transmembrane efflux transporters, represent a potential source of insecticide detoxification activity or transportation that remains largely unexplored in B. dorsalis. In this study, seven BdABCB genes were identified and comprehensive analyzed based on the latest genome and transcriptome dataset. Subsequently, we characterized the expression profiles of these genes across different development stages and tissues, as well as under different insecticide exposures. The results showed that the BdABCB genes were expressed at all stages in B. dorsalis, with BdABCB2 and BdABCB7 being highly expressed in the pupal stage, while BdABCB5 and BdABCB6 were highly expressed in the larval stage. Besides, the BdABCBs were highly expressed in the detoxification metabolic tissues. Among them, BdABCB5 and BdABCB6 were significantly overexpressed in the midgut and Malpighian tubules, respectively. Furthermore, with the exception of BdABCB6, the expression levels of the other six BdABCBs were significantly up-regulated following induction with avermectin, beta-cypermethrin and malathion. Six BdABCBs (BdABCB1-5 and BdABCB7) were knocked down by RNA interference, and the interference efficiencies were 46.58%, 39.50%, 45.60%, 33.74%, 66.37% and 63.83%, respectively. After injecting dsBdABCBs, the mortality of flies increased by 25.23% to 39.67% compared to the control upon exposure to the three insecticides. These results suggested that BdABCBs play crucial roles in the detoxification or tolerance of B. dorsalis to multiple insecticides.


Assuntos
Inseticidas , Tephritidae , Animais , Inseticidas/farmacologia , Malation/toxicidade , Tephritidae/genética , Resistência a Inseticidas/genética
7.
Crit Rev Toxicol ; 53(8): 506-520, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37922518

RESUMO

Malathion and diazinon are pesticides commonly used in agriculture to avoid insects that damage crops; however, they may cause impairment to the male genital system of exposed humans. The present work carried out a systematic review of the literature concerning the primary studies that assessed the reproductive effects resulting from male rats and mice exposed to malathion or diazinon. The search for articles was performed on the databases PubMed, LILACS, Scopus, and SciELO, using different combinations of the search terms "malathion," "diazinon," "mice," "rats," "male reproduction," "fertility," and "sperm," followed by the Boolean operators AND or OR. The results obtained indicate that both pesticides act as reproductive toxicants by reducing sperm quality, diminishing hormonal concentrations, inducing increased oxidative stress, and provoking histopathological damage in reproductive organs. Then, the exposure to malathion and diazinon may provoke diminished levels of testosterone by increasing acetylcholine stimulation in the testis through muscarinic receptors, thus, providing a reduction in steroidogenic activity in Leydig cells, whose effect is related to lower levels of testosterone in rodents, and consequently, it is associated with decreased fertility. Considering the toxic effects on the male genital system of rodents and the possible male reproductive toxicity in humans, it is recommended the decreased use of these pesticides and their replacement for others that show no or few toxic effects for non-target animals.


Assuntos
Inseticidas , Praguicidas , Humanos , Masculino , Ratos , Animais , Camundongos , Malation/toxicidade , Diazinon/toxicidade , Inseticidas/toxicidade , Roedores , Sêmen , Praguicidas/toxicidade , Reprodução , Testosterona
8.
Sci Rep ; 13(1): 17253, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828123

RESUMO

The "Integrated Wastewater Discharge Standard" was implemented for water pollutant discharge in China's pesticide industry, which has no control requirements for particular wastewater pollutants in the industry. In the standard, certain pollutants discharge limits are limited strictly or loosely, resulting in practical management implementation difficulties. In view of the highly selective targeting characteristics of organic pesticide active ingredients in fungicides, insecticides, and herbicides, a method for deriving discharge limits based on the water quality criteria for pesticides for the protection of nonsensitive species is established based on the idea of fully protecting aquatic organisms beyond sensitive objects. Through the use of malathion as an example, by screening its toxicity data in different species of aquatic organisms, the sequence point with the most significant change in the acute toxicity sensitivity of the species is taken as the variation point in the cumulative frequency of the sensitive and nonsensitive species to derive the water quality criteria, using the species sensitivity distribution method as the scientific basis for determining the discharge limits. After a comparative analysis of different simulation models, the sigmoid model, with the best fit, is selected to determine that the sensitive species hazard concentration (HCs) of malathion to aquatic organisms in China is 46.4 µg/L, and the discharge limit derived from the HCs based on the relationship between the environmental capacity and emissions is rounded to 250 µg/L. Studies showed that the relationship between the emissions limit derived from the water quality criteria for protecting nonsensitive species and malathion limit stipulated in the "Environmental Quality Standards for Surface Water" conforms to the corresponding relationship of the quality standard and discharge standard, which can be achieved by current pollution control technology, combined with water quality improvement. The discharge limit offers the advantages of technical accessibility and economic rationality.


Assuntos
Praguicidas , Poluentes Químicos da Água , Poluentes da Água , Malation/toxicidade , Poluentes da Água/análise , Organismos Aquáticos , Águas Residuárias , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Praguicidas/toxicidade , Qualidade da Água
9.
Environ Toxicol Pharmacol ; 104: 104304, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890807

RESUMO

This study focused on organophosphate malathion toxicity in Danube sturgeon (Acipenser gueldenstaedtii) and its negative effects in sub-lethal concentration. In this context, the LC50 value of fish exposed to five different concentrations and two different sub-lethal concentrations depending on the LC50 value were considered. Accordingly, LC50 of malathion for 96 h was 3.24 mg L-1. In leukocyte (WBC) and hemoglobin (HGB) such as hematological indicators, significant differences were observed in sub-lethal concentration (One-eighth of the LC50 =0.4 mg L-1). In addition, serious histological alterations were observed in the gill and liver tissues after both acute (96 h) and chronic periods (28 days). While epithelial lifting and hyperplasia were the most prominent lesions in the gill, intense vacuolization were observed in the liver. In addition, circulatory disturbances, regressive changes, and progressive changes in the gill and circulatory disturbances and inflammation in the liver were significantly higher for the chronic period. Finally, significantly higher DNA damage was detected in fish exposed malathion in the chronic period compared to the control group. In conclusion, the present study has proven that malathion has a hematological, histological and genotoxic effect on the endangered species A. gueldenstaedtii. Thus, the current study will motivate for residue studies on A. gueldenstaedtii and trigger conservation strategies for local governments.


Assuntos
Malation , Poluentes Químicos da Água , Animais , Malation/toxicidade , Organofosfatos , Peixes , Hemoglobinas , Dano ao DNA , Poluentes Químicos da Água/toxicidade
10.
Aquat Toxicol ; 264: 106691, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866165

RESUMO

Globally, river pesticide concentrations are associated with regional and local stream invertebrate diversity declines. Pesticides often co-occur with elevated nutrients (e.g. nitrogen and phosphorus) and sediments related to agriculture, making their individual effects difficult to disentangle. These effects are also less well studied in Asia, than in other geographic regions. Within Asia, India is one of the largest producers and users of pesticides and has approximately 60% of total land mass used for agriculture. Here we examine the responses of Indian river invertebrate communities subjected to malathion, nutrients, and sediment additions in a semi-orthogonal design, in three sequential (through time) short-term (120 h) mesocosm experiments. Additionally, a series of single-species toxicity tests were run that used 24 h exposure and 72 h recovery to examine the sensitivity of 13 local invertebrate taxa to malathion, and 9 taxa to cypermethrin, comparing these results to those from other biogeographic regions. Mesocosm results indicate that malathion exposure had a major effect compared to other stressors on communities, with a lesser effect of nutrients and/or sediments. In mesocosms, taxa richness, total abundance and the abundance of sensitive species all declined associated with malathion concentrations. Comparisons of organism sensitivities from other geographic locations and those in the current paper suggest taxa in India are relatively tolerant to malathion and cypermethrin. Our results further reinforce that the high observed aquatic pesticide concentrations known to occur in Asian freshwater ecosystems are likely to be negatively affecting biodiversity, homogenising biota towards those most stress tolerant.


Assuntos
Inseticidas , Praguicidas , Poluentes Químicos da Água , Animais , Inseticidas/toxicidade , Ecossistema , Malation/toxicidade , Poluentes Químicos da Água/toxicidade , Invertebrados , Praguicidas/toxicidade , Rios
11.
Pestic Biochem Physiol ; 194: 105498, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532320

RESUMO

Glutathione S-transferases (GSTs) are one of the three detoxification enzyme families. The constitutive and inducible overexpression of GSTs genes plays an important role in insecticide resistance. Previous study showed that malathion resistance was polygenic, and elevated GSTs activity was one of the important factor participating in malathion resistance of Bactrocera dorsalis (Hendel), a serious economic pest worldwide. BdGSTd5 overexpression was inducible upon exposure to malathion. However, the involvement of BdGSTd5 in malathion resistance has not been clarified. In this study, we found that BdGSTd5 sequence harbored the conserved region of delta class GSTs, which were overexpressed in malathion resistant strain of B. dorsalis compared to malathion susceptible strain. The highest mRNA expression level of BdGSTd5 was found in 1-day-old adult, and the levels decreased with aging. The dsBdGSTd5 injection effectively silenced (73.4% reduction) the expression of BdGSTd5 and caused significant increase in susceptibility to malathion with a cumulative mortality increasing of 13.5% at 72 h post malathion treatment (p < 0.05). Cytotoxicity assay demonstrated that BdGSTd5 was capable of malathion detoxification. Molecular docking analysis further indicated the interactive potential of BdGSTd5 with malathion and its toxic oxide malaoxon. The recombinant BdGSTd5 exhibited glutathione-conjugating activity toward 1-chloro-2, 4-dinitrobenzene and malathion and malaoxon metabolic capacity with significant reduction (p < 0.05) of the peak areas by 90.0% and 73.1%, respectively. Taken together, the overexpressed BdGSTd5 contributes to malathion metabolism and resistance, which detoxify the malathion in B. dorsalis via directly depleting malathion and malaoxon.


Assuntos
Inseticidas , Tephritidae , Animais , Malation/toxicidade , Inseticidas/farmacologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Simulação de Acoplamento Molecular , Tephritidae/genética , Resistência a Inseticidas/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-37491117

RESUMO

Dialkylphosphates (DAPs), metabolites of organophosphate (OP) pesticides, are widely distributed in the environment and are often used as biomarkers of OP exposure. Recent reports indicate that DAPs may be genotoxic, both in vitro and in vivo. We have examined the genotoxicity of the methylated DAPs dimethyldithiophosphate (DMDTP) and dimethylphosphate (DMTP) and the ethylated DAPs diethyldithiophosphate (DEDTP) and diethylphosphate (DETP), in comparison with their parental compounds, malathion and terbufos, respectively, in bone marrow polychromatic erythrocytes (PCE) of male and female Balb/c mice. We also compared DNA damage (comet assay) induced by DMDTP and dimethyl phosphate (DMP) in human cell lines. Both DMDTP and DMP caused DNA damage in peripheral blood mononuclear cells, HeLa cells, and the hepatic cell lines HepG2 and WRL-68. In the in vivo micronucleus assay, methylated and ethylated DAPs increased micronucleated PCE cells in both male and female mice. Female mice were more susceptible to DNA damage. In comparison to their parental compounds, methylated DAPs, particularly DMTP, were more genotoxic than malathion; DEDTP, DETP, and terbufos were similar in potency. These results suggest that DAPs may contribute to DNA damage associated with OP pesticide exposure.


Assuntos
Inseticidas , Praguicidas , Masculino , Feminino , Humanos , Animais , Camundongos , Malation/toxicidade , Camundongos Endogâmicos BALB C , Leucócitos Mononucleares/química , Células HeLa , Compostos Organofosforados/toxicidade , Organofosfatos/toxicidade , Dano ao DNA , Células da Medula Óssea/metabolismo , Praguicidas/toxicidade , Exposição Ambiental
13.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298367

RESUMO

Complex diseases are associated with the effects of multiple genes, proteins, and biological pathways. In this context, the tools of Network Medicine are compatible as a platform to systematically explore not only the molecular complexity of a specific disease but may also lead to the identification of disease modules and pathways. Such an approach enables us to gain a better understanding of how environmental chemical exposures affect the function of human cells, providing better perceptions about the mechanisms involved and helping to monitor/prevent exposure and disease to chemicals such as benzene and malathion. We selected differentially expressed genes for exposure to benzene and malathion. The construction of interaction networks was carried out using GeneMANIA and STRING. Topological properties were calculated using MCODE, BiNGO, and CentiScaPe, and a Benzene network composed of 114 genes and 2415 interactions was obtained. After topological analysis, five networks were identified. In these subnets, the most interconnected nodes were identified as: IL-8, KLF6, KLF4, JUN, SERTAD1, and MT1H. In the Malathion network, composed of 67 proteins and 134 interactions, HRAS and STAT3 were the most interconnected nodes. Path analysis, combined with various types of high-throughput data, reflects biological processes more clearly and comprehensively than analyses involving the evaluation of individual genes. We emphasize the central roles played by several important hub genes obtained by exposure to benzene and malathion.


Assuntos
Benzeno , Exposição Ocupacional , Humanos , Benzeno/toxicidade , Malation/toxicidade , Biomarcadores/metabolismo , Exposição Ocupacional/efeitos adversos , Exposição Ambiental , Redes Reguladoras de Genes , Perfilação da Expressão Gênica
14.
Chem Biol Interact ; 382: 110593, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270087

RESUMO

The non-cholinergic molecular targets of organophosphate (OP) compounds have recently been investigated to explain their role in the generation of non-neurological diseases, such as immunotoxicity and cancer. Here, we evaluated the effects of malathion and its dialkylphosphate (DAP) metabolites on the cytoskeleton components and organization of RAW264.7 murine macrophages as non-cholinergic targets of OP and DAPs toxicity. All OP compounds affected actin and tubulin polymerization. Malathion, dimethyldithiophosphate (DMDTP) dimethylthiophosphate (DMTP), and dimethylphosphate (DMP) induced elongated morphologies and the formation of pseudopods rich in microtubule structures, and increased filopodia formation and general actin disorganization in RAW264.7 cells and slightly reduced stress fibers in the human fibroblasts GM03440, without significantly disrupting the tubulin or vimentin cytoskeleton. Exposure to DMTP and DMP increased cell migration in the wound healing assay but did not affect phagocytosis, indicating a very specific modification in the organization of the cytoskeleton. The induction of actin cytoskeleton rearrangement and cell migration suggested the activation of cytoskeletal regulators such as small GTPases. We found that DMP slightly reduced Ras homolog family member A activity but increased the activities of Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) from 5 min to 2 h of exposure. Chemical inhibition of Rac1 with NSC23766 reduced cell polarization and treatment with DMP enhanced cell migration, but Cdc42 inhibition by ML-141 completely inhibited the effects of DMP. These results suggest that methylated OP compounds, especially DMP, can modify macrophage cytoskeleton function and configuration via activation of Cdc42, which may represent a potential non-cholinergic molecular target for OP compounds.


Assuntos
Inseticidas , Malation , Camundongos , Humanos , Animais , Malation/toxicidade , Malation/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Tubulina (Proteína)/metabolismo , Citoesqueleto de Actina/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Movimento Celular , Compostos Organofosforados/metabolismo , Organofosfatos/metabolismo
15.
Life Sci ; 327: 121840, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290667

RESUMO

BACKGROUND: Malathion (MAL) is an organophosphate insecticide that inhibits cholinesterases, used to control pests in agriculture and to combat mosquitoes that transmit various arboviruses. As acetylcholine is one of the major neurotransmitters of the enteric nervous system (ENS), humans exposed to MAL by ingestion of contaminated food and water can develop symptoms due disfunction of the gastrointestinal tract. Although the deleterious effects after exposure to high doses are recognized, little is known about the long-term and low-dose effects of this pesticide on the structure and motility of the colon. AIMS: to evaluate the effects of prolonged oral exposure to low levels of MAL on the wall structure and colonic motility parameters of young rats. MAIN METHODS: The animals were divided into three groups: control, and groups that received 10 or 50 mg/kg of MAL via gavage for 40 days. The colon was collected for histological analysis and analysis of the ENS through the evaluation of total neurons and subpopulations of the myenteric and submucosal plexuses. Cholinesterase activity and functional analyzes of the colon were evaluated. KEY FINDINGS: MAL treatments (10 and 50 mg/Kg) reduced the butyrylcholinesterase activity, and caused enlargement of faecal pellets, atrophy of muscle layers and several changes in neurons of both myenteric and submucosal plexi. Considering colonic contraction, MAL (50 mg/Kg) increased the number of retrograde colonic migratory motor complexes. SIGNIFICANCE: The long-term exposure to low doses of MAL affects colonic morphophysiology, which highlights the need to intensify control and care in the use of this pesticide.


Assuntos
Sistema Nervoso Entérico , Praguicidas , Humanos , Ratos , Animais , Malation/toxicidade , Butirilcolinesterase , Colo
16.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047231

RESUMO

The evidence supporting the biological plausibility of the association of permethrin and malathion with hematological cancer is limited and contradictory; thus, further studies are needed. This study aimed to investigate whether in vitro exposure to 0.1 µM permethrin and malathion at 0, 24, 48 and 72 h after cell culture initiation induced changes in the gene expression and DNA methylation in mononuclear cells from bone marrow and peripheral blood (BMMCs, PBMCs). Both pesticides induced several gene expression modifications in both tissues. Through gene ontology analysis, we found that permethrin deregulates ion channels in PBMCs and BMMCs and that malathion alters genes coding proteins with nucleic acid binding capacity, which was also observed in PBMCs exposed to permethrin. Additionally, we found that both insecticides deregulate genes coding proteins with chemotaxis functions, ion channels, and cytokines. Several genes deregulated in this study are potentially associated with cancer onset and development, and some of them have been reported to be deregulated in hematological cancer. We found that permethrin does not induce DNA hypermethylation but can induce hypomethylation, and that malathion generated both types of events. Our results suggest that these pesticides have the potential to modify gene expression through changes in promoter DNA methylation and potentially through other mechanisms that should be investigated.


Assuntos
Neoplasias Hematológicas , Inseticidas , Piretrinas , Humanos , Inseticidas/toxicidade , Permetrina/toxicidade , Malation/toxicidade , Medula Óssea , Metilação de DNA , Expressão Gênica
17.
Gac Med Mex ; 159(1): 44-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930557

RESUMO

INTRODUCTION: Owing to its ability to reduce the toxicity of environmental pollutants that are risk factors for diabetes and obesity, the use of probiotic bacteria might aid the treatment of these diseases. OBJECTIVE: To determine the effects of chronic exposure to low-dose malathion on weight and glucose levels in mice, as well as to evaluate the protective role of a probiotic supplement. METHODS: Weight and serum glucose levels of four groups of mice (control, malathion-exposed [10 ppm], probiotics and malathion + probiotics) were determined every 10 days for 180 days. RESULTS: Malathion administration induced an increase in weight and glucose levels in the malathion group mice in comparison with the other groups. CONCLUSIONS: Consumption of food contaminated with malathion residues increases glucose levels and favors weight gain, while consumption of probiotics reduces the effects generated by residues in food.


INTRODUCCIÓN: Debido a su capacidad para reducir la toxicidad de contaminantes ambientales que constituyen factores de riesgo de diabetes y obesidad, el uso de bacterias probióticas podría ayudar al tratamiento de esas enfermedades. OBJETIVO: Determinar los efectos de la exposición crónica a malatión a dosis bajas sobre el peso y los niveles de glucosa de ratones, así como evaluar el papel protector de un suplemento probiótico. MÉTODOS: Cada 10 días se determinó el peso y la glucosa sérica de cuatro grupos de ratones (de control, expuestos a malatión (10 ppm), probióticos y malatión + probióticos) durante 180 días. RESULTADOS: La administración de malatión provocó un incremento del peso y los niveles de glucosa en los ratones del grupo con malatión comparados con los demás grupos. CONCLUSIONES: El consumo de alimentos contaminados con residuos de malatión aumenta los niveles de glucosa y favorece el incremento del peso; el consumo de probióticos disminuye los efectos generados por los residuos en los alimentos.


Assuntos
Malation , Probióticos , Camundongos , Animais , Malation/toxicidade , Aumento de Peso , Obesidade/prevenção & controle , Probióticos/uso terapêutico , Glucose
18.
Sci Total Environ ; 874: 162585, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870510

RESUMO

Honey bees play an important role in the ecological environment. Regrettably, a decline in honey bee colonies caused by chemical insecticides has occurred throughout the world. Potential stereoselective toxicity of chiral insecticides may be a hidden source of danger to bee colonies. In this study, the stereoselective exposure risk and mechanism of malathion and its chiral metabolite malaoxon were investigated. The absolute configurations were identified using an electron circular dichroism (ECD) model. Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for chiral separation. In pollen, the initial residues of malathion and malaoxon enantiomers were 3571-3619 and 397-402 µg/kg, respectively, and R-malathion degraded relatively slowly. The oral LD50 values of R-malathion and S-malathion were 0.187 and 0.912 µg/bee with 5 times difference, respectively, and the malaoxon values were 0.633 and 0.766 µg/bee. The Pollen Hazard Quotient (PHQ) was used to evaluate exposure risk. R-malathion showed a higher risk. An analysis of the proteome, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and subcellular localization, indicated that energy metabolism and neurotransmitter transport were the main affected pathways. Our results provide a new scheme for the evaluation of the stereoselective exposure risk of chiral pesticides to honey bees.


Assuntos
Inseticidas , Estupro , Abelhas , Animais , Malation/toxicidade , Malation/química , Inseticidas/toxicidade , Inseticidas/análise , Proteoma , Cromatografia Líquida , Espectrometria de Massas em Tandem
19.
Chem Res Toxicol ; 36(3): 535-551, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36799861

RESUMO

Chiral organophosphorus pollutants are found abundantly in the environment, but the neurotoxicity risks of these asymmetric chemicals to human health have not been fully assessed. Using cellular, molecular, and computational toxicology methods, this story is to explore the static and dynamic toxic actions and its stereoselective differences of chiral isocarbophos toward SH-SY5Y nerve cells mediated by acetylcholinesterase (AChE) and further dissect the microscopic basis of enantioselective neurotoxicity. Cell-based assays indicate that chiral isocarbophos exhibits strong enantioselectivity in the inhibition of the survival rates of SH-SY5Y cells and the intracellular AChE activity, and the cytotoxicity of (S)-isocarbophos is significantly greater than that of (R)-isocarbophos. The inhibitory effects of isocarbophos enantiomers on the intracellular AChE activity are dose-dependent, and the half-maximal inhibitory concentrations (IC50) of (R)-/(S)-isocarbophos are 6.179/1.753 µM, respectively. Molecular experiments explain the results of cellular assays, namely, the stereoselective toxic actions of isocarbophos enantiomers on SH-SY5Y cells are stemmed from the differences in bioaffinities between isocarbophos enantiomers and neuronal AChE. In the meantime, the modes of neurotoxic actions display that the key amino acid residues formed strong noncovalent interactions are obviously different, which are related closely to the molecular structural rigidity of chiral isocarbophos and the conformational dynamics and flexibility of the substrate binding domain in neuronal AChE. Still, we observed that the stable "sandwich-type π-π stacking" fashioned between isocarbophos enantiomers and aromatic Trp-86 and Tyr-337 residues is crucial, which notably reduces the van der Waals' contribution (ΔGvdW) in the AChE-(S)-isocarbophos complexes and induces the disparities in free energies during the enantioselective neurotoxic conjugations and thus elucidating that (S)-isocarbophos mediated by synaptic AChE has a strong toxic effect on SH-SY5Y neuronal cells. Clearly, this effort can provide experimental insights for evaluating the neurotoxicity risks of human exposure to chiral organophosphates from macroscopic to microscopic levels.


Assuntos
Neuroblastoma , Síndromes Neurotóxicas , Humanos , Estereoisomerismo , Acetilcolinesterase/química , Malation/química , Malation/toxicidade
20.
Chem Biol Interact ; 374: 110405, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796534

RESUMO

Different classes of pesticides such as fungicides, herbicides, and insecticides, can induce differential expression of genes that are involved in tumorigenesis events in fish, including the expression of tumor suppressor tp53. The degree and duration of the stressful condition is decisive in defining which tp53-dependent pathway will be activated. Herein we evaluate the target genes expression that participates in the regulation pathway of the tumor suppressor tp53 and in the cancerous processes in tambaqui after exposure to malathion. Our hypothesis is that malathion promotes a gene response that is differentially regulated over time, with positive regulation of tp53 target genes related to the apoptotic pathway and a negative regulation of genes that promote antioxidant responses. The fish were exposed to a sublethal concentration of the insecticide for 6 and 48 h. Liver samples were used to analyze the expression of 11 genes using real-time PCR. Overall, the malathion promoted over time increases in tp53 expression and differential expression of tp53 related genes. The exposure resulted in the activation of damage response related genes, caused a positive expression of atm/atr genes. The pro-apoptotic gene bax was up-regulated and the anti-apoptotic bcl2 was down-regulated. Increased expression of mdm2 and sesn1 in the first hours of exposure and no effect on the antioxidant genes sod2 and gpx1 were also observed. We also witnessed an increase in the expression of the hif-1α gene, with no effect on ras proto-oncogene. The extension of this stressful condition accentuated tp53 transcription, and minimized the levels of mdm2, sens1 and bax; however, it down regulated the levels of bcl2 and the bcl2/bax ratio, which indicates the maintenance of the apoptotic response to the detriment of an antioxidant response.


Assuntos
Inseticidas , Neoplasias , Animais , Malation/toxicidade , Proteína X Associada a bcl-2/metabolismo , Antioxidantes/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Inseticidas/toxicidade , Estresse Oxidativo , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...